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Warming and Hyett developed a modified equation technique in which the behavior of a 
difference scheme is evaluated by using the coefficients of a certain modified equation. Speciti- 
tally, they discovered a connection between these coefficients and the multiplication factor 
obtained from the von Neumann analysis. Since the dissipation and dispersion of error com- 
ponents are determined by the multiplication factor, the former properties can be studied 
using the coefhcients of the modified equation. The work of Warming and Hyett represents 
a key step in the development of the method of modified equations. Througgh this work, it 
became clear that modified equations should be derived from the difference scheme rather 
than from the original differential equation. However, in order to “prove” the above connec- 
tion, Warming and Hyett incorrectly interpreted their modified equations as the actual partial 
differential equations solved by the difference schemes. The main purpose of the current study 
is to investigate rigorously the above connection without using their interpretation, The result 
of this investigation shows that the above connection is only partially valid for multilevel 
schemes. In the von Neumann analysis, the multiplication factor associated with a wave 
number generaliy has (L- 1) roots for an L-level scheme. It is shown that the coefftcients of 
the modified equation provide information for only the principal root. 0 1990 Academic 

Press, Inc. 

INTRODUCTION 

The method of modified equations is an important tool in the design and analysis 
of difference schemes for linear and nonlinear time-dependent problems. Extensive 
lists of publications on this subject are given in two recent papers [ 1 ] by Goo 
and Majda and [23 by Griffiths and Sanz-Serna. A general discuss’ on tile 
theoretical foundation and applicability of this method can also be f~ in [2] 
(hereafter referred to as GS). 

According to GS, the modified equation technique for the analysis of a numerical 
scheme consists of the construction of a modified differential equation in such a way 
that the numerical solutions are more accurately matched by the solutions of the 
modified equation than by the solutions of the original differential equation 
solved by the numerical scheme. In other words, the behavior of the num 
scheme is better described by the modified equation than by the original differential 
ecmation. Since a particular solution of the modified equation c 
without the necessary initial/boundary conditions, in applying t 
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tion technique, one should consider modified problems, i.e., the modified equation 
should be supplemented by the necessary initial/boundary conditions. 

An exception to the above description of modified equations is the work of 
Warming and Hyett [3] (hereafter referred to as WH). This work represents a key 
step in the development of the method of modified equations. Through WH, it 
became clear that modified equations should be derived from the difference scheme 
rather than from the original differential equation. The significance of WH is also 
reflected by the dominant role it plays in Chapter 4 of a recent textbook by Anderson, 
Tannehill, and Pletcher [4]. In WH, the behavior of a given numerical scheme is 
evaluated by using the coefficients of a special modified equation constructed from 
the numerical scheme. The solutions of the modified equation are not used in this 
evaluation. Specifically, Warming and Hyett discovered a connection between these 
coefficients and the error multiplication factor which one obtains in the von 
Neumann analysis. Since the dissipation and dispersion of error components are 
determined by the multiplication factor, the former properties can be studied using 
the coefficients of the modified equation.- Note that an exponential function appears 
on page 166 of WH (see also Eq. (1.27) of the current paper) as an “elementary” 
soution of the modified equation. However, this solution is not intended to be an 
approximation of a numerical solution as described in GS. It is introduced only as 
a part of Warming and Hyett’s effort to “prove” the above connection. 

The modified equations derived in WH differ from most other modified equations 
in two important aspects: First, the modified equations considered by Warming and 
Hyett contain spatial derivatives of arbitrarily high order while those considered by 
most authors are differential equations of finite order. Shokin is another author 
who considers modified equations of arbitrary order [S]. 

Second, the modified equations considered in WH are given a more specific inter- 
pretation than that generally given to modified equations; i.e., the former are inter- 
preted by Warming and Hyett as the actual partial differential equations solved by 
difference schemes. It should be noted that their more spectfic interpretation is essen- 
tial for the develoment in WH, i.e., it is used to establish the connection between the 
multiplication factor and the coefficients of the corresponding modified equation. This 
fact is stated on page 171 in WH; i.e., “But since the modified equation represents 
the exact partial differential equation solved by a finite-difference scheme, the 
amplification factor (5.1) must equal the amplification factor (4.4) of the difference 
scheme.” The above quoted statement also indicates that Warming and Hyett’s 
proof of the above connection, contrast to some arguments given in WH, is not 
heuristic in nature. 

Note that the validity of the connection mentioned above is not dependent on the 
mesh size. As a result, Warming and Hyett’s interpretation cannot be used to prove 
this connection unless it means to apply to difference schemes of arbitrary mesh 
size. With this understanding, it becomes obvious that their interpretation really has 
no clear meaning since one cannot define uniquely “the actual partial differential 
equation” solved by a given difference scheme with a mesh of finite interval. This can 
be seen by the following argument: For such a difference scheme, there are infinitely 
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many discrete solutions corresponding to different ~n~tia~/~o~~dary con 
Given any one of these discrete solutions, there exist in~~it~~y many smoot 
functions whose values at the mesh points coincide with of the 
solution. These smooth functions generally do not satisfy the s artial di 
equation. 

Since no clear dehnition of Warming and yett’s i~te~~~~tati~~ is given in 
one can only infer its meaning from how thi term-elation is used. The arg~~~~$§ 
used by arming and Hyett to establish the connection tween the ~u~t~~~i~at~~~ 
factor a the modified equation (pp. 166, 171 in W 
presented in Section 1 of the current paper in an easi 
From the role it plays in these arguments and other statements made in 
appears that Warming and Hyett’s interpretation means a smaot~ function shsu!d 
satisfy a special modified equation $ its values at the mesh points form a ~~~~~t~~~ of 
the ~ffere~c~ scheme from which the modified equation is construe 

gument which is presented earlier to demonstrate the ambiguity of 
ett’s i~ter~~etat~on~ one may conclude that the above italicized st 

to note that Warming and Hyett 
ons must be qualified. A paragra 

following statement “This assertion of the equivalence of tbe mo 
the difference algorithm should be qualified since the modified equation contains 
spatial derivatives of arbitrarily high order. Thus, strictly speaking, an Infinite 
number of boundary conditions is required to define a solution. I 
(S ions 3 5), we assume spatial periodicity to replace the requi 
CO itions.’ owever, the above qualified interpretation may be contr 
example given in Section 1. 

In this r we will rigorously study the connection between a 
factor an corresponding modified equation without using 

yett’s interpretation. The result of this study reveals t at this connection is only 
artially valid for a class of schemes involving more 

m the von Neumann analysis, the multiplication 
er generally has (L - 1) roots for an L-level scheme. ~~Q~~ these roots, one 

is the principal root while the rest are spurious roots. The current analysis re 
that the rn~~i~~~ equation constructed according to the procedure specifi 

rovides information for only the principal root. This inadequacy is not 
H since it considers only two-le B problems which have no 
for the multiplication factor. In however, the i~a~eq~a~y 

became apparent when the technique developed in to study a three- 
level scheme, i.e., the leap-frog method. Given a wave number, there are two 
solutions for the relative phase error according to the von ~~~~a~~ method while 
only cme solution can be obtained by using tbe modified equation approach (see 
Eqs. (4-24) and (4-48) in [4]). 

Note that another diffkulty in applying t ed equations to multi- 
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level schemes is described on pages 1000-1001 of GS. For a multilevel scheme, the 
main difference scheme must be supplemented by other starting conditions (which 
are not the initial conditions-see Eq. (3.5b) in GS). Generally, the solutions of a 
modified equation satisfy the starting conditions at an order of correctness lower 
than they satisfy the main difference scheme. As a result, a modified problem cannot 
attain the order of correctness which one would expect if only the main difference 
scheme is considered. Since the roots of a multiplication factor are completely deter- 
mined by the main difference scheme in the von Neumann analysis, it is obvious 
that the difficulty described in GS regarding multilevel schemes differs from what 
we describe here in both its nature and origin. 

The remainder of the paper is briefly described as follows: In Section 1, we review 
the work of Warming and Hyett. We also point out its deficiencies and describe the 
correct way to understand the relation between the von Neumann analysis and the 
modified equation stability analysis developed in WH. Note that this section 
describes essentially all the key ideas of the current work with minimum mathe- 
matical details. Thus a reader who is not particularly mathematically inclined may 
gain enough understanding of the current work without reading beyond Section 1. 
In Section 2, the von Neumann analysis is applied to a class of L-level difference 
schemes. It is shown that the coefficients of the modified equation provide informa- 
tion for the principal root but not the spurious roots. Finally, in Section 3, we 
summarize and discuss the key results of the current investigation. 

1. A CRITICAL REVIEW OF THE WORK BY WARMING AND HYETT 

The linear partial differential equations considered in WH and the current paper 
have the form 

g+Y(u)=o, (1.1) 
where 

Lgx(u) z 5 c, g ) 
( ) 

M= 1,2, 3, . . . . (1.2) 
m=l 

The dependent variable u in Eq. ( 1.1) is a function of a spatial variable x and a tem- 
poral variable t. The coefficients c, in Eq. (1.2) are assumed to be real constants. 
Note that 9” was originally defined in WH (p. 160) as a linear spatial differential 
operator; i.e., the coefficients c, could be functions of x and t. However, as shown 
in [6], this will result in the breakdown of the modified equation derivation proce- 
dure developed in WH. No difficulty occurs in WH since it deals only with constant 
coefficient model problems. 

In the following, the essence of WH will be discussed using a numerical example. 
To proceed, we consider a specific example of Eq. (1.1); i.e., 

g+cg=o; (1.3) 
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where c is a real constant. Equation (1.3) may be solved numerically using the 
upwind difference scheme; i.e., 

(u;+l-U:)+C(~~-ll:_l)=* 
At Ax ’ 

(f.4) 

where Ax and At are grid intervals in the x- and t-directions, respectively. U: 
denotes the finite-difference solution at the mesh point where x = j Ax and d = 92 At. 

The work by Warming and Hyett is closely related to the von Neumann stability 
analysis. As a preliminary to the correct understanding of this relation, first we 
present several important results of the von Neumann analysis. Let 

q = p&&Ax, i=JZ, (1.5) 

where G is the multiplication factor, and k the real wave number, S~bstit~t~~g 
Eq. (1.5) into Eq. (1.4), one obtains 

G=(l-i’)+&ikd”, (1.6) 

where i” is the courant number, i.e., 

4 ffzf c At/Ax. (1.7) 

Let ,8 be a complex variable. It is shown in Section 2 that, in a neighborhood 
of /3 = 0, there exists an analytic function @i(p) such that 

(4 @l(p)” = (1 - 4) + &-PAX, j 6 yi’, (1.8) 

and 
fb) cq(O)=O. (1.9 

Note that the right side of Eq. (1.8) is reduced to that of Eq. (1.6) if b = ik. Thus 

G = erl(ik)At > ike F,. 

Using the analyticity of al(B) and Eq. (1.9), one concludes t 

where 
def 1 liPa, 

Vi(P) = p! ___ i 1 W *=o’ 
p = 1, 2, 3, . . . 

From Eq. (1.8) one obtains 

v,(l) = -C, v,(2)= 
cAx(l-5) 

v,(3) = 
- c(Ax)2 (2<2 - 35 + I) 

2 ) 6 
9 

(1.10) 

jr.11g 

(1.12) 

(1.13) 

SXL/86ji-8 
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Obviously, v,(l), vi(2), and v,(3), are all real. In fact, it is shown in Section 2 that 
vi(p) are real for all p 3 1. This coupled with Eq. (1.11) implies that 

Re[a,(ik)] = f (- l)pk2p~,(2p), 
6‘=1 

ikE Y, (1.14) 

and 

ImCa,Cik)l = f (- l)pk2p+‘v,(2p + i), ikE Iv,, (1.15) 
p=o 

where Re[a,(ik)] and Im[a,(ik)] are, respectively, the real and imaginary parts of 
a,(ik). According to Eqs. (1.5) and (l.lO), the dissipation and dispersion of an error 
component are determined, respectively, by Re[a,(ik)] and Im[a,( ik)]. Thus it 
follows from Eqs. (1.14) and (1.15) that the dissipation and dispersion of an error 
component with ik E Iv, are determined, respectively, by v,(2p) (p = 1, 2, . ..) and 
v,(2p + 1) (p =O, 1,2, . ..). Note that this conclusion is a direct result of the 
von Neumann analysis involving Eq. (1.4). No ideas from modified equations were 
used in this derivation. 

The coefficients vi(p) can be evaluated using Eq. (1.12) if a,(b) is explicitly given. 
As it turns out, they can also be evaluated using the modified equations derivation 
procedure developed in WH (hereafter, this procedure is referred to as the W-H 
procedure). In the Appendix, it will be shown that the coefficients vi(p), 
p = 1, 2, 3, . ..) are identical to the coefficients of the modified equation generated 
from the difference scheme (1.4). This fact coupled with Eqs. (1.14), (1.15), and 
(1.10) makes it possible to study the dissipative and dispersive errors of the 
difference scheme (1.4) by using the coefficients of the corresponding modified 
equation. 

The argument used in WH to establish the relation between the behavior of a dif- 
ference scheme and the corresponding modified equation are different from those 
presented above. In the following, these arguments will be discussed. Specifically, 
we will (i) briefly describe the W-H procedure, (ii) discuss the validity of the 
individual steps within the W-H procedure, (iii) provide a counterexample to 
Warming and Hyett’s interpretation of their modified equations, (iv) explain how 
Warming and Hyett established the connection between the multiplication factor G 
of a difference scheme and the coefficients of the corresponding modified equation 
by using their interpretation of modified equations, and (v) reinterpret the W-H 
procedure in a way such that it is free of the criticisms cited in (ii) and (iii) and also 
provides the basis for rigorous discussions given in the later sections. 

(i) A Description of the W-H Procedure 

In the W-H procedure, Warming and Hyett consider a smooth function U(X, t) 
such that uJ.’ = def u(j dx, IZ At) satisfies Eq. (1.4) at all mesh points. Substituting the 
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aylor series expansions of u;+ ’ and u;- I about the mesh point (j Ax, IZ At) into 
Eq. (1.4), one obtains 

(1.86) 

where (i?u/iJt)~ , (&4/dx);, . . . . respectively, are the values of &/at, au/ax, . . . . al the 
mesh point (j Ax, n At). In the W-H procedure, ~a~~~~g and ett assume that 
IQ. (1.16) is valid beyond the mesh points; i.e., 

for all (x, t) E r, where r is a continuous domain of x and 1. Note that brackets are 
iserted on the left sides of Eqs. (1.16) and (1.17) to indicate that a term in a partial 
sum of the convergent series on the left side of Eq. (1.16) or Eq. (1.17) shoul 
the entire expression within one set of brackets [7, pp. 370-3711. This is si 
since the convergence property of a series is dependent on how the terms 
are grouped [7, pp. 332-3331. Note that, except for missing brackets, Eq. (1.5) in 

H (p. 164) will replace Eq. (1.17) if the Lax-Wendroff scheme; i.e., Eq. (1.3) in 
I-I (p. 161) takes the place of the upwind scheme (1.4). 
Next, in order to obtain a partial differential equation with the form 

derivatives higher than first order are “eliminated” from Eq. (1.17) by a 
be described below. The method requires repeated use of Eq. (I.1 
eliminate the d2ul& term, Eq. (1.17) is multiplied term-by-term by 
-(At/2)a/at. The result is then added to Eq. (1.17). The resulting new 
a mixed derivative term -(c At/2)a2u/&dx which, in turn, can be e 
applying the operator (c At/2)a/dx to Eq. (1.17) term- y-term and adding the result 
to the new equation. This elimination procedure can be organized into a table as 
illustrated in Table I. The first two rows list the derivatives through third order and 
their coefficients appearing in Eq. (1.17). The subsequent rows list the ~oe~~~~~ts of 
the derivative terms obtained after operation on Eq. (1.17) with the 
operators shown on the left-most column. The table is continued until 
number of time derivatives are eliminated. For any n = I, 2, 3, . . . . the eiimi~ati~~ 
procedure leads to 

M(n) + R(n) = 0; (1.18) 
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where 

and 

(n) “gf the residual term containing derivatives higher than nth order . 

The coefficients p(l), p(2), . . . . p(n) are real constants. Comparing Ta 
Eq. (1.19) one concludes that 

P(l) = v,(l), P(2) = v,(2), P(3) = v,(3), 

where v2(f), v,(2), v,(3) are defined in Eq. (1.13). In 
that 

lim M(n) = 0. 
n-tco 

As a result of Eqs. (1.19) and (1.22), one obtains the modi~ed equation 

(1.23) 

(ii) The validity of the W-H Procedure 

procedure, Warming and Hyett assume the existence of a smooth 
function u(x, t) which 

(a) coincides with an exact solution of Eq. (1.4) at the mes 
(lo) satisfies Eq. (1.17) at least in some domain r on the x - t plane. 

In order to proceed from Eq. (1.17) to Eq. (1.18), one must also assume that the 
function u is such that 

(c) the series formed as the results of the successive term-by-term di~~re~tia- 
tion with respect to x or t of the series in Eq. (1.17) also converge to zero in $. 

usly, condition (a) does not imply conditions (b) and (c). In other words, 
h function u which coincides with an exact solution of Eq. (1.4) at the mes 

points generally does not satisfy Eq. (1.18). 
The last assumption of the W-H procedure is Eq. (1.22). Since M(1 )9 M 

respectively, are the partial sums of the dljjferent series (M(1) % 
(2) + R(2)), . . . . in general, it is incorrect to consider Eq. (1.22) as a result of 

Eq. (1.18). Note that a counterexample to Eq. (1.22) will be presented imme~iately~ 
In conclusion, the above discussion shows that a smooth function u which satisfies 

Eq. (1.4) at all mesh points generally does not satisfy the ~~d~~~ed equation In 
other words, Warming and Hyett’s interpretation of Eq. (1.23) is not su 
its derivation procedure. 
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(iii) A Counterexample to the Interpretation of Warming and Hyett 

As a counterexample to Warming and Hyett’s interpretation of the modified 
equation (1.23), we choose 

u(x, t) = ewl~~)~ (1.24) 

Since u(j Ax, n At) = 1 at all mesh points, ~7 = def u(j Ax, n d t) satisfies Eq. (1.4) and 
any periodic condition in space. However, for this choice of U, every term on the 
right side of Eq. (1.23) vanishes while 

@i&e(2""/At) ~0; 

at - At 
(1.25) 

i.e., the function u does not satisfy the modified Eq. (1.23) even though 
~7 = u(jAx, n At) satisfies the difference scheme (1.4) and U(X, t) satisfies any 
periodic condition in space. This counterexample clearly demonstrates that the 
modified equation generally does not represent the exact partial differential equa- 
tion solved by a finite-difference equation even if spatial periodicity is assumed. 
Note that 

M(~) = z e(2nWAt), n = 1, 2, 3, . . . (1.26) 

if u is given by Eq. (1.24). Obviously Eq. (1.26) is inconsistent with the assumption 
in (1.22). Also note that counterexamples in which u is a function of both x and t 
will be provided in Section 2. 

(iv) The Proof Given by Warming and Hyett on the Connection between the Multi- 
plication Factor and the Modified Equation 

Let ul(P) be the function defined by Eqs. (1.8) and (1.9). Let 

u(x, t) d&f eal(ik)r + ikx, ik E Yf/, , (1.27) 

where k is any real number. Then ~7 = def u(j Ax, n At) satisfies Eq. (1.4) at all mesh 
points. If the modified Eq. (1.23) indeed represents the exact partial differential 
equation solved by the finite-difference scheme (1.4) then u(x, t) defined in 
Eq. (1.27) should be a solution to Eq. (1.23). Substituting Eq. (1.27) into Eq. (1.23), 
one obtains 

a,(ik) = f ,dp)(ikY’, ike Y,. (1.28) 
p=l 

Equations (1.10) and (1.28) imply that the multiplication factor G is determined by 
the coefficients p(p) at least in some neighborhood of k=O. Since p(p), 
p = 1, 2, 3, . ..) are all real, Eq. (1.28) also implies that Eqs. (1.14) and (1.15) are still 
valid if v,(2p) and v,(2p + 1) in these equations are replaced, respectively, by p(2p) 
and P( 2p + 1). 
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Note that, in the Appendix, it will be proved rigorously that 

P(P) = V,(P), p= 1, 2, 3, ‘..~ 

a result, Eq. (1.28) may be obtained from Eqs. (I.1 1) and (1.29 ithout using 
interpretation of the modified equation given by Warming and ett. 

(v) A New Merpretation for the W-N Procedure 

The previous discussion shows that: 

(a) The interpretation given to the modified Eq. (1.23) by Warming an 
yett is flawed and thus Eq. (1.28) may not be proved by an arg~rn~~~ using 
. (1.23); and 

(b) with the aid of Eq. (1.28), the application of the modifi 
que developed in WH requires as the input only the coefficients 

From ervations (a) and (b), one concludes that the only useful information 
rovided the W-H procedure is the coefficients p(p). As a result, it is unne- 

cessary to consider the W-H procedure as a procedure to generate the mod&e 
Eq. (1.23 ). Instead, one may view the W-H procedure only as a procedure to yiel 
the coefficients p(p) from the difference Eq. (1.4). 

In developing a new interpretation for the W- procedure, we consi 
fo~~owi~~ L-level difference analogue of Eq. ( 1.1): 

L-1 q/ 
1 c Af,u;;+=O 
I=0 q= -4, (1.30) 

L = 2, 3, 4, . . . . n = 0, 1, 2, . . . . j=o, + 4, *2, .~.) 

where qi and qf are nonnegative integers, and Ai real constants. Note that the 
number of the spatial mesh points to the left (right) of xi ( =j dx) used in E 
may vary from one time level to another. Thus -qi and qf specify the m 
range of q among all time levels such that Af # 0. Also note 
model problems considered in WH are all special cases of E 

By expanding each u,+~ n+’ into a Taylor series about the 
substituting the results into Eq. (1.30), one obtains 

where 

L-l ‘I/ 

c A$ At)“-” (q Ax)~ 

(5.31) 

(1.32) 

p = 0, 1, 2, . . . . m = 0, I, 2, ..~) p. 
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Equation (1.31) implies that 

L-1 v 

Eo,oEf c c Al,=0 

I=0 q=pql 
(1.33) 

is required for consistency between Eqs. (1.1) and ( 1.30). In the current paper, we 
also assume that the coefficients Ai are normalized such that 

L-l v 

E sAt c c IA;=l. I,0 - 
* I=1 q=-qi 

(1.34) 

Note that Eq. (1.16) is a special case of Eq. (1.31). A comparison between 
Eqs. (1.16) and (1.31) also reveals that both Eqs. (1.33) and (1.34) are satisfied for 
the difference scheme ,( 1.4). 

The W-H procedure was explained using Eq. (1.4) as an example. Similarly, for 
any difference scheme (1.30) with E,,, = 0 and E,,, = 1, the W-H procedure can 
also be carried out by replacing each coefficient which is listed right below the 
derivative d%/dt*-” dx” in Table I with the coefficient EP,,. Again the elimination 
procedure illustrated in Table I will lead to Eq. (1.18). It is seen that the coefficients 
p(p) are determined by the coefficients Ep,,,. A comprehensive analysis of the W-H 
procedure [6] reveals that Ep,,, and p(p) are related by a set of algebraic relations. 
To express these relations, one first defines the coefficients E$) (n, p = 1, 2, 3, . . . . 
I = 0, 1, 2, . . . . (n - 1); m = 0, 1, 2, . . . . p) in terms of Ep,m by induction; i.e., 

E(‘,o) “gf E 
*.m p,m, p=l,2,3, . . . . m=O, 1,2, . . . . p 

EC”+ 1.0) dzf E(“,“- 1) _ E~i~l-o” 
*.m P,m , .Ep-n,m 

n, p= 1, 2, 3, . . . . m = 0, 1, 2, . . . . p 

,J++l) “zf Eh~)-&$ .Ep--n+l m--l-I 
P>m *,m > 

n = 2, 3, 4, . . . . I= 0, 1, 2, . ..) (n - 2); 

p=l,2,3 . 3 . . . . m = 0, 1, 2, . . . . p, 

(1.35) 

(1.36) 

(1.37) 

where 
def 

E 0, P,rn = if m>p, or m<O, or p<l (1.38) 

is assumed in Eqs. (1.36) and (1.37). It is shown in [6] that 

p(p)= -Ef$‘-l), p= 1,2, 3, . . . . (1.39) 

Note that the exact roles played by the coefficients Ep,,, (n,‘) in the W-H procedure are 
described in [6]. Also note that, for any given p, Eqs. (1.35) to (1.39) imply that 
p(p) is completely determined by the set of coefficients Epf,,,, with p’ = 1,2, . . . . p and 
m’= 0, 1, 2, . . . . p’. In other words, ,u(p) is not dependent on any Epf,,. with p’>p. 
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In the new interpretation of the W-H procedure, it is simply considered as rhe 
algebraic procedure by which the coefficients p(p) are generated from the c~eff~~~e~t,s 
E p," through the use of Eqs. (1.35) to (1.39). With this ink 
procedure is completely free of the criticisms cited in 

With the aid of Eq. (1.29), it has been shown that t plication factor G for 
the difference scheme (1.4) may be determined in terms of the coefficients p(p) if the 
wave number k is small enough. In the following section, it will be shown that a 
similar connection between G and ,u(p) exists for any difference scheme (1.30) with 
L = 2. However, this connection become more complicated for a difference SC 
(1.30) with L > 3. In the von Neumann analysis, the m~~tipii~atio~ fact 
associated with a wave number k generally has (E - 1) roots for a difference SC 
(1.30). s it turns out, only the principal root can be 
coefficient p(p) in the neighborhood of k = 0. 

2. VON NEUMANN STABILITY ANALYSIS 

In this section, we consider the difference schemes (1.30). Eet 

u” “SF ea(nAr) + B(jAx) 
I > (2.1) 

where a and /I are complex parameters. It is easy to see that ~7 is a solution of 
Eq. (1.30) if and only if 

(2.2) 

In the Van Neumann analysis, an error component may be written in the form of 
Eq. (2.1) with ,B = ik where i = fi and k is a real number. Given a k, the 
parameter a is determined by the requirement that k is component be a sol&on of 
Eq. (1.30), i.e., that a be a solution of Eq. (2.2). Let 

(2.3) 

‘I’hen Eq. (2.1) implies that U; = GneijkAX, . i.e., G is the multiplication factor. In the 
current paper, unless specified otherwise, j? is allowed to have both real and 
imaginary parts. 

Equation (2.2) represents a relation between CI and p. T is relation is easier :5 

grasp if it is rewritten as 
L-1 / w \ 

c 
I=0 

( c ALePvn.) G’= 0. 
Y= --Y1 

For a given /3, the above equation can be considered as an algebraic equation 
of 6. If v 

c A:-lePqdx # 0 12.5) 
q= --Y, 
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the algebraic equation (2.4) is of degree (L - 1). Thus, generally, G has (L - 1) 
roots for each value of b. Given G, the parameter a is determined by Eq. (2.3) up 
to an arbitrary multiple of 2m/At. In other words, for given value of p, generally 
there are (L - 1) principal solutions of ~1. As will be shown, an understanding of the 
relation between CI and p in the neighborhood of /?= 0 is critical to the current 
investigation. Assuming Eqs. (1.33) and (1.34), this relation was studied by using 
the Implicit Function Theorem [S, p. 1471. The details are given in [6]. Let NR 
be the number of the simple roots (i.e., roots with multiplicity = 1) of the algebraic 
Eq. (2.4) when /? = 0. It is shown in [6] that there exists a set of functions a,(/?) 
(r = 1, 2, 3, . ..) NR) which, respectively, are bounded and analytic in some bounded 
neighborhoods Y’, of /I = 0. Furthermore, these functions satisfy the conditions: 

L-1 w 

(4 
C 1 ~‘,~br.(LW’+&Axl =o, bE lu,, (2.6) 
I=0 q= -qj 

L-1 q/ 
(b) c c IA 

;eCMW’~+BvJ~l ~0, bE yr (2.7) 
I=1 q=-qi 

(c) a,(O), Y I=1 

Y  3   T r  - 0 . 2 7 0 2 4 1 2 4  0   T 8  I 6 a 5 o . 4 F u r t h e r m o r e ,  
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Let k be a wave number such that ik E Y’, for all r = 1,2, 3, . . . . W 
states that Eq. (2.2) is satisfied if a = cc,(p), r = 1, 2, . . . . NR, a co 
Eqs. (2.10) and (2.3) reveals that G,(ik), G,(ik), . . . . GNR(ik) ar roots of the mul- 
tiplication factor 6. Since aI(O) = 0 and a,(O) # 0, r = 2, 3, . . . . 
will be designated as the principal root while GZ(ik), G3( 

As an example, consider the leap-frog scheme for Eq. (1.3), ie., 

For this scheme, NR = 2, 

G,(ik) = -it sin(k dx) + Jl - iJ’ sin2(k Ax) 

and 
G,(ik) = -it sin(k dx) - I- <” sin”(k dx), 

where t =def c d t/Ax. 
Since every R,(P) is analytic in !Pr, one has [S, p. 5161 

where 

HAP) =dQ) + f Vr(P)BP, B 6 y’,; (2.12) 
p=l 

p= 1,2, 3 , . . . . r = 1, 2, 3, . . . . N (2.13) 

Several comments can be made about Eqs. (2.12) and (2.13 ): 

(a) Because ~~(0)=0, Eqs. (2.12) and (2.13) respectively, are reduce 
Eqs. (1.11) and (1.12) for any scheme (1.30) with NR = 1. 

(b) Equations (2.10) and (2.12) imply that any root G,(a) is dete 
@r(Q) md V,(P), p = 4 2, 3, ..., if ik E ul,. As will be shown in the 
Eq. (1.29) is valid for any difference scheme (1.30). Since ai = 0, one concludes 
that the principal root G,(ik) may be evaluated using the coefficients p(p) if 
ik E Y,. However, since generally v,(p) #p(p), p = I,& 3, . . . . if r 2 2, a s~~r~o~s 
root may not be determined by the coefficients ,u(p) even if a,(O) is given 

(c) Since p(p) are real, the relation v~(I~) = p(p)? p = 1, 2, 3, ~.., implies t 
v,(p) are also real. It is shown in [63 that this fact can also be established without 
involving ,u(p) by using Eqs. (2.6) to (2.8) and (2.13). Since vi(p) are real 
aI(O) =O, Eq. (2.12) can be used to show that Eqs. (1.14) and (1.15) are vali 
any difference scheme (1.30). Obviously, these two equations are also valid for any 

rence scheme (1.30) if v,(2p) and v,(2p + I), respectively, are replaced by p(2~) 
PGJP + 1). 
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(d) Let 

u;~‘(x, t) gf ear(/3)t+px, PE ul,; r = 1, 2, 3, . . . . NR, (2.14) 

where @ represents a two-parameter family of functions of x and t. Equation 
(2.6) implies that 

u; = zp’(j Ax, n At) (2.15) 

is a solution of Eq. (1.30) for any I = 1,2, . . . . NR and p E Yr. According to the inter- 
pretation of the modified Eq. (1.23) given by Warming and Hyett, one would expect 
that 

u = tP)(x t) I 3 (2.16) 

is a solution of Eq. (1.23) for any Y = 1, 2, . . . . NR and p E Y,.. If this were true, 
Eqs. (2.14), (2.16), and (1.23) would imply that, for any Y = 1,2, . . . . NR, 

%(B) = f AP)P”> PE ‘u,. (2.17) 
p=l 

Since the power series expansion of the analytic function a,(/?) is unique in Yr 
[S, p. 4131, consistency between Eqs. (2.12) and (2.17) requires that 

a,(O) = 0 (2.18) 

and 

V,(P) = P(P), p = 1, 2, 3, . ..* (2.19) 

According to Eq. (2.8), Eq. (2.18) is false unless r = 1. For r = 1, Eq. (2.19) is simply 
Eq. (1.29). Thus one concludes that u = u!@)(.x, t) satisfies the modified Eq. (1.23) if 
and only if r= 1. 

3. CONCLUSIONS AND DISCUSSIONS 

Warming and Hyett developed a modified equation technique by which the 
behavior of a difference scheme (1.30) with L = 2 may be evaluated in terms of the 
coefficients p(p) of the modified equation (1.23). Specitically, they discovered that 
the multiplication factor G is related to p(p) by Eqs. (1.10) and (1.28). Since the 
dissipation and dispersion of error components are determined by G, the former 
properties can be determined in terms of p(p). 

In order to “prove” the relation (1.28), Warming and Hyett interpret the 
modified equation (1.23) as the actual partial differential equation solved by the 
difference scheme (1.30). It is shown in the current paper that this interpretation is 
flawed even if spatial periodicity is assumed. 
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In the current paper, it is also shown that the W-H procedure by which the 
modilied equation (1.23) is derived cannot be justified without irn~Qs~~g unrealistic 
assumptions. However, this difficulty may be avoided if the procedure is 
simply considered as an algebraic procedure by which the c ents p(p) are 

generated from the coefficients Ep,m through the use of Eqs. ( 
new interpretation of the W-H procedure also provides the 
proof of the important relation (1.29). Given the relation (1.29), 
a result of Eq. (1.11). In other words, Eq. (1.28) can be prov 
argument independent of the modified equation (1.23). 

For a difference scheme (1.30) with L > 2, generally the multiplication factor G 
has several roots for a given wave number k. It is shown in the current pa 
CAY e principal root can be evaluated in terms of the coefficient p(p) by using 

E@. 10) and (1.28). 
The coeffiencts p(p) can be evaluated using the W-II procedure. 

Eqs. (1.12), (1.29), and (2.6) to (2.8), they can also be evaluated using differe~ti~” 
tion. As an example, we consider the explicit two-level scheme 

uS+l=B~~r-~+B,u:+B+uy+,, (3.1) 

B,, and B, are real constants which satisfy the consistent condition 

B~+BO+B+=l. (3.2) 

For this case, it can be shown that 

i”(~)=r,(l)=$)B+ -Be) (3.3) 

~(2)=v,(2)=% [(B, +B_)-( (3.4) 

and 

(3.6) 

APPENDIX: PROOF FOR EQ. (1.29) 

In this appendix, relation (1.29) will be rigorously established for the difference 
schemes (1.30). As a preliminary, note that 

(a) The power series CFS, zP/p! converges uniformly to eZ in any bounded 
domain on the complex z-plane [8, pp. 409, 5351. 
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(b) Let g,(z) and h,(z), p = 0, 1,2, . . . . be functions of the complex variable z. 
Let the series CT=, g,(z) and x7=, h,(z) converge uniformly in a complex domain J. 
If i(z) and Y( z are bounded in J, then the series 1 

f CUZ) g,(z) + ?wg41 
p=o 

converges uniformly to 

l(z) f g,(z)+ r(z) ITi h,(z) 
p=o p=o 

in J [9, pp. 337, 4281. 
Since cc,(/s), respectively, are bounded in the bounded domains Yru,, one concludes 

from (a) that the series 

respectively, converges uniformly to 

in ul,. With the aid of this fact and (b), Eq. (2.6) implies that 

fJ.5 Ep,mMB))P-“P” = 0, r = 1, 2, 3, . . . . NR, (A.11 
p=l ??I=0 1 

where the coefficients Ep,,, are defined in Eq. (1.32) and the series on the left side 
converges uniformly in YY. Furthermore, using Eq. (A.l) and (b), one has 

f [ MPW-‘P’ i Ep&~O)“-“~“] = 0 
p=l m=O 

n = 0, 1, ) . . . . l=O, 1,2, . . . . n; r = 1, 2, 3, . . . . NR, (A.2) 

where the series on the left side converges uniformly in Y,. 
It is shown in [6] that, by linerly combining the equations given in (A.2), one 

may obtain 

Ej,$‘(a,(j3))P-mP” =0 1 
n = 1, 2, 3, . . . . l=O, 1,2, . . . . (n- 1); r = 1, 2, 3, . . . . NR, (A.3) 

where the coefficients EFi) are functions of Ep,m defined by Eqs. (1.35) to (1.38). 
Again the series on the left side of Eq. (A.3) converges uniformly in Y,. Note that 
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the linear combination procedure which leads Eq. (A.2) to Eq. (A.3) is very similar 
to the eliminaton procedure described in Table I; i.e., the latter is identical to the 
former except that the derivative 8’u/atnp’ ax’ in the latter is replaced by the 
product [a,@)]“-‘/?’ in the former. Also note that the coefficients 

) p= 1,2, 3 ) . . . . I= 0, 1, 2, . . . . (n - 1); m = 0, 1,2: . . . . up) possess the fohowmg 
operties [6 f : 

(a) , / qy’=&,=~ CA.41 
(b) E;;‘= Ef;p--) if n>p (A.5) 

(c) EEL’=0 if ~32, P>m, and il>p kAJ3 

(d) Eg’=p if n32, n>m, an I 3 m (A.4) 

For the special case I=n - 1, with the aid of Eqs. (A.4) to (A.7) and (1.3 
Eq. (A.3) can be rewritten as 

Consider the special case Y = I. For a fixed n > 0, let 

&(a, ,-zf cL(p)B*, p= 1,2,3, . ..) n; /!IE 19 (A.9) 
an 

f,(p) gf - i E;;nn-l)(al(P))P~mflm, 
PI=0 

p=n+ l,n+2, n+3, . . . . 06 Yl. 

Then Eq. (A.8) implies that 

%(P) = f f*(P), BE 
p=l 

Since oll(/?) is analytic in Iv,, so are the functions f,(p), p = n + 1, p2 + 2, n + 3, l.. 
[7, p. 5131. Thus one has 

f,(B) = f 4?B”? p = 1, 2, 3, . ..) (A.12) 
??I=0 

where a,$) are coefficients independent of j?. Obviously, 

622” = q$(p) if g = 1, 2, 3, . ..) n, (A.13) 

where 6: is the Kronecker-delta symbol. Moreover, since a;(O) =O, the Taylor’s 
expansion about ,/I = 0 of any f,(p) with p > n + 1 has a leading term involvin 
where m 38. As a result, 

&) = if p=n+l,n+2,n+3,..., and m m = 0, 1, 2, . ..) (p - I). (A.14) 
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A direct result of Eqs. (A.13) and (A.14) is ale)= 0, p = 1, 2, 3, . . . . Using the 
Weierstrass’ theorem on double series [9, p. 4301, one concludes that 

(a) The series Cp”= 1 u$’ converges for any m = 1,2, 3, . . . . 

(b) @l(P)= f Azp”, PEYl, (A.15) 
m=l 

where 

A, %‘ f a$‘, m = 1, 2, 3, . . . (A.16) 
p=l 

According to Eqs . (A.13) and (A.14), 

A, = dm), m = 1, 2, 3, . . . . n. (A.17) 

With the aid of Eqs. (A.17) and (2.8), a comparison between Eqs. (2.12) and (A.15) 
reveals that vi(p) = ,u(p), p = 1, 2, 3, . . . . iz. This must be true since or is analytic 
in YI . Moreover, since n is any integer > 1, one concludes that the relation (1.29) 
must be true for any difference scheme (1.30). Q.E.D. 

Finally, it is noted that the argument which is used to prove Eq. (1.29) does not 
apply if r > 1. This is because a,(O) # 0 if r > 1. Thus, in general, 

V,(P) #P(P)> p=1,2,3 . , ‘.., r = 2, 3, 4, . . . . NR. (A.18) 
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